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Abstract
We present an overview of the description of structural, thermochemical, and electronic
properties of extended systems using several well known hybrid Hartree–Fock/
density-functional-theory functionals (PBE0, HSE03, and B3LYP). In addition we address a
few aspects of the evaluation of the Hartree–Fock exchange interactions in reciprocal space,
relevant to all methods that employ a plane wave basis set and periodic boundary conditions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Kohn–Sham density functional theory (DFT) has proven to
be a very powerful tool for the quantitative prediction of
materials properties, both in computational solid state physics
and in quantum chemistry. In its most commonly applied
approximations to the electronic exchange and correlation,
i.e. in the local density approximation (LDA) and the semilocal
generalized gradient approximation (GGA), DFT is highly
efficient and surprisingly accurate. Still, though, present local
and semilocal functionals show significant errors, for instance,
in the energetics of small molecules and in the description of
the band gaps of extended systems.

Hybrid functionals, i.e. exchange–correlation functionals
that admix a certain amount of Hartree–Fock (HF) exchange
to (a part of) a local or semilocal density functional, have
been shown to remedy several deficiencies of the latter.
Most notably, HF/DFT hybrid functionals are known to
present an improved description of the thermochemistry of
molecular systems [1–4]. Due to the large computational effort
required to evaluate the Hartree–Fock exchange under periodic
boundary conditions, however, HF/DFT hybrid schemes have
rarely been applied to periodic systems, and comprehensive
systematic studies of the HF/DFT description of extended
systems were largely lacking until recently. The past
several years have seen a change, with a number of papers
published providing a detailed evaluation of the description
of structural, thermochemical, and electronic properties of
extended systems using the PBE0, HSE03, and B3LYP
HF/DFT hybrid functionals [5–8].

This contribution presents a summary of the main
characteristics of the aforementioned hybrid functionals

applied to extended systems. As such it recapitulates the
results presented in [7] and [8] (and references therein), on
lattice parameters, bulk moduli, atomization energies, heats
of formation, band gaps, and band widths for a selection of
archetypical metallic, semiconducting and ionic solid state
systems. Additionally, we discuss the results of hybrid
functional calculations on transition metal monoxides (TMOs)
and the adsorption of carbon monoxide on d-metal surfaces.

The remainder of this paper is organized as follows: in
section 2 the expressions for the PBE0, HSE03, and B3LYP
exchange–correlation energy are given. Section 3 deals with
several computational aspects of the Hartree–Fock exchange
interaction in reciprocal space, relevant to methods that use a
plane wave basis set and periodic boundary conditions. Results
are presented in section 4, conclusions in section 5.

2. Theory

Under periodic boundary conditions, the nonlocal Hartree–
Fock exchange energy EHF

X (in real space) can be written as

EHF
X = −e2

2

∑

kn,qm

2wk fkn × wq fqm

×
∫ ∫

d3r d3r′ φ
∗
kn(r)φqm(r)φ∗

qm(r′)φkn(r′)
|r − r′| , (1)

where {φkn(r)} is the set of one-electron Bloch states of the
system, and { fkn} the corresponding set of (possibly fractional)
occupational numbers. The sums over k and q run over all
k-points chosen to sample the Brillouin zone (BZ), whereas
the sums over m and n are performed over all bands at these
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k-points. The k-point weights wk sum to one, and the factor
2 accounts for the fact that we consider a spin degenerated
system.

2.1. PBE0

The PBE0 hybrid functional [2, 3] is constructed by mixing
25% of Hartree–Fock exchange to 75% of the well known
PBE exchange [9]. The electronic correlation is represented
by the corresponding part of the PBE density functional. Thus,
the resulting exchange–correlation energy expression takes the
following simple form:

EPBE0
xc = 1

4 EHF
X + 3

4 EPBE
X + EPBE

c , (2)

where EPBE
X and EPBE

c denote the PBE exchange and
correlation energies, respectively. The 1:3 mixing ratio of
Hartree–Fock to PBE exchange is based on a conceptual
model devised by Ernzerhof and co-workers [10–12]. Hybrid
functionals based on their work are often called ‘parameter-
free’ or non-empirical, since the amount of Hartree–Fock
exchange to be admixed is not determined by a fit to
experimental data.

2.2. HSE03

Depending on the decay of the Hartree–Fock exchange
interactions with distance, the evaluation of EHF

X (equation (1))
may be computationally very demanding. The decay is highly
system dependent and may range from a few to up to hundreds
of Ångstroms. To avoid the calculation of expensive integrals
over slowly decaying exchange interactions, Heyd et al [13]
proposed to replace the long-range part of the Hartree–Fock
exchange in the PBE0 HF/DFT hybrid by a corresponding
density functional counterpart. The resulting expression for
the exchange–correlation energy (HSE03) is given by

EHSE03
xc = 1

4 EHF,sr,μ
X + 3

4 EPBE,sr,μ
X + EPBE,lr,μ

X + EPBE
c , (3)

where (sr) and (lr) denote the short- and long-range parts of the
respective exchange interactions (HF or PBE exchange). The
separation of the exchange interactions into short- and long-
range parts is accomplished through a decomposition of the
Coulomb kernel

1

r
= Sμ(r) + Lμ(r) = erfc(μr)

r
+ erf(μr)

r
, (4)

where r = |r − r′|, and μ is the parameter that defines the
range separation. μ is related to a characteristic distance,
(2/μ), at which the short-range interactions become negligible.
Thus EHF,sr,μ

X is given by equation (1), provided one replaces
the Coulomb kernel by Sμ(r). The short- and long-range
parts of the PBE exchange energy are derived using the same
decomposition (equation (4)) [13]. Empirically, it was shown
that the optimum range-separation parameter μ is between 0.2
and 0.3 Å

−1
[13, 14]. Consequently, the HSE03 functional

is a semiempirical functional. In general, one finds that the
results using HSE03 are very similar to those obtained using
the PBE0.

2.3. B3LYP

The B3LYP functional [15, 16] follows the ‘formal structure’
of the hybrid functionals proposed by Becke [17]. The
exchange energy is given by

EB3LYP
X = 0.8ELDA

X + 0.2EHF
X + 0.72�EB88

X , (5)

where ELDA
X and �EB88

X are the LDA exchange and
the gradient corrections to the Becke88 exchange [18],
respectively.

The B3LYP correlation energy is defined as

EB3LYP
C = 0.19EVWN3

C + 0.81ELYP
C , (6)

where EVWN3
C and ELYP

C denote the correlation energy from
the Vosko–Wilk–Nusair III [19] and the Lee–Yang–Parr [20]
correlation functionals, respectively.

The B3LYP functional is a semiempirical functional. The
coefficients in equations (5) and (6) are determined by a
least square fit to atomization energies, electron and proton
affinities, and the ionization potentials of the atomic species
and molecules in Pople’s G2 test set.

3. Computational aspects

In this section we address a few aspects of the evaluation of
the Hartree–Fock exchange interactions in reciprocal space,
i.e. relevant to all methods that employ a plane wave basis set
and periodic boundary conditions. For a detailed description of
the HF exchange formalism within the projector-augmented-
wave (PAW) method [21] and its implementation in the Vienna
ab initio simulation package (VASP) [22, 23], we refer to [4]
and [7] (and references therein).

3.1. Scaling

To illustrate how to best evaluate equation (1) we first define
the overlap density between two Bloch states a = kn and
b = qm as

nab(r) = φ∗
a (r)φb(r). (7)

and the two-orbital exchange potential

Vab(r) =
∫

n∗
ab(r

′)
|r − r′| dr′. (8)

Note that nab(r) and Vab(r) are not cell periodic and possess
a Bloch wavevector Q = q − k. The potential can be
conveniently calculated in reciprocal space,

Vab(G) = 4πe2 nab(G)

|G + q − k|2 , (9)

where nab(G) is the Fourier transform of the cell-periodic part
of the overlap density nab(r). Within a plane wave basis set the
latter is easily obtained by means of a fast Fourier transform
(FFT{nab(r)} → nab(G)). A second FFT yields the cell-
periodic part of Vab(r), the two-orbital exchange potential in
real space (FFT{Vab(G)} → Vab(r)). Finally, the integral

∫
φa(r)Vab(r)φ∗

b (r) dr (10)

is evaluated in real space.

2



J. Phys.: Condens. Matter 20 (2008) 064201 M Marsman et al

Basically, the above sketches how the explicit convolu-
tions in equation (1) may be avoided at the cost of perform-
ing two FFTs. The cost of performing an FFT scales as
NFFT ln NFFT, where NFFT is the number of points in the FFT
grid.

The overall computational cost of evaluating equation (1)
is proportional to

(Nbands × Nk)
2 NFFT ln NFFT, (11)

where Nk is the number of k-points that sample the first
Brillouin zone and Nbands is the number of bands at each
k-point. The quantities NFFT, Nbands, and Nk scale in the
following manner with increasing system size (given by the
number of atoms in the system, Natoms): NFFT ln NFFT ∝
Natoms, Nbands ∝ Natoms, and Nk ∝ 1/Natoms. Thus, the
computational cost for the evaluation of the HF exchange
energy scales linearly with the number of atoms (∝ Natoms).
One should beware though that this relation breaks down as
soon as Nk = 1 is reached (e.g. large supercells, molecule in
a box), i.e., as soon as Nk cannot be reduced any more upon
an increase in system size. For Nk = 1 the computational cost
scales cubically with the number of atoms (∝ N3

atoms).

3.2. Downsampling

As mentioned in section 2.2, the computational advantage
of the HSE03 functional over the PBE0 stems from the
elimination of the long-range part of the HF exchange, which
leads to a reduction of the domain (in real space) over which
the HF exchange integrals have to be evaluated. When the
HF exchange is evaluated in reciprocal space, as sketched in
section 3.1, the reduction in the computational requirements
associated with the HSE03 scheme is of a different form:
within a bandstructure picture, the increased locality of the
HSE03 HF exchange interactions allows us to evaluate the
short-range HF operator on a less dense k-point grid than
would be needed to accurately capture the features of the full
HF operator. As was shown in [7], this may be exploited in the
following manner.

The short-range part of the HF exchange is given by (see
section 2.2 and compare to equation (1))

EHF,sr,μ
X = −e2

2

∑

kn,qm

2wk fkn × wq fqm

×
∫ ∫

d3r d3r′ erfc(μ|r − r′|)
|r − r′|

× φ∗
kn(r)φqm(r)φ∗

qm(r′)φkn(r′), (12)

and the corresponding nonlocal short-range HF exchange
potential by

V HF,sr,μ
X

(
r, r′) = −e2

∑

qm

wq fqm

× eiq·ruqm(r)
erfc(μ|r − r′|)

|r − r′| u∗
qm(r′) e−iq·r′

, (13)

where uqm(r) is the cell-periodic part of the Bloch state φqm(r).
As mentioned above, due to the accelerated decay of the kernel
erfc(μ|r − r′|)/|r − r′|, the short-range HF exchange potential
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Figure 1. Dependence of the PBE0 (circles) and HSE03 (squares)
HF exchange energy of fcc Al on the ‘downsampled’ {q} mesh
(nq × nq × nq) used to represent the nonlocal HF exchange potential.
A (24 × 24 × 24) ‘full’ grid {k} was used to represent the
wavefunctions.

can in most cases be represented on a coarser mesh of k-
points in the Brillouin zone than the other contributions to the
Hamiltonian. Hence, the sum over q in equation (13) can be
restricted to a subset {q} of the full (N1 × N2 × N3) k-point set
{k}, for which the following holds:

{q} =
{

k +
3∑

i=1

mi Ci

Ni
bi |mi = 0, . . . ,

Ni

Ci
− 1

}
, (14)

where Ci is an integer ‘grid reduction factor’ along reciprocal
lattice direction bi . This reduces the computational workload
by a factor C1C2C3 (as can be easily seen from equation (11)).

The above is illustrated by figure 1 depicting the
dependence of the PBE0 and HSE03 HF exchange energy of
fcc Al on the mesh of k-points (nq ×nq ×nq) used to represent
the HF exchange potential (the ‘downsampled’ grid {q}). A
grid of (24 × 24 × 24) k-points was used to represent the
wavefunctions on the ‘full’ grid {k}. The points nq = 4, 6, 8,
12, and 24 correspond to grid reduction factors of C1,2,3 = 6,
4, 3, 2, and 1, respectively.

As can be seen in figure 1, the reduction in the range of
the HF exchange interaction in the HSE03 functional clearly
shows up in its {q}-mesh representability. The HSE03 HF
exchange energy is converged to 1 meV for a (6 × 6 × 6) {q}-
space representation of the HF potential, whereas the PBE0 HF
exchange energy still changes by roughly 5 meV, when going
from a (24 × 24 × 24) to a (12 × 12 × 12) {q}-sampling and
by almost 40 meV when going to a (6 × 6 × 6) {q}-mesh.

3.3. Accuracy

Our implementation of HF/DFT hybrid functionals within
the PAW method was extensively benchmarked against
Gaussian type orbital (GTO) local basis set calculations
with GAUSSIAN03 [15]. This is illustrated in figure 2 showing
the deviation of the PAW PBE and PBE0 atomization energies

3
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Figure 2. Deviations of the PAW PBE and PBE0 atomization
energies with respect to experiment (circles and squares) and GTO
calculations (triangles and diamonds), for a subset of Pople’s G2-1
test set of small molecules.

with respect to experiment and GTO calculations, for a subset
of Pople’s G2-1 test set of small molecules (see [4] and
references therein).

As can be seen, the agreement between the PAW and GTO
atomization energies is excellent, for both PBE (triangles)
and PBE0 (diamonds). The mean absolute deviation (MAE)
between the PAW PBE and PBE0 atomization energies and the
GTO results for the complete G2-1 test set is 0.46 kcal mol−1

and 0.49 kcal mol−1, respectively [4]. Furthermore, the
deviation between the PAW and GTO atomization energies
remains <1.5 kcal mol−1 for all molecules in the G2-1 set.
The level of agreement between plane wave and local basis
set calculations is indeed excellent, especially in comparison
to the deviations of the PBE and PBE0 atomization energies
with respect to experiment (circles and squares in figure 2,
respectively).

Comparable benchmarks for the structural parameters of
the molecules in the G2-1 test set yield a similar level of
agreement between PAW and GTO results [4]. Beware,
however, that this kind of quantitative agreement between PAW
and GTO calculations is only reached when both are well
converged with respect to their respective basis sets. The latter
is demonstrated in figure 3, depicting the relative PBE bond
lengths of Cl2, ClF, and HCl, obtained with increasing GTO
basis sets (aug-cc-pVXZ (X = D, T, Q, 5)), with respect to
well converged PAW results (a (13 × 14 × 15) Å

3
supercell,

1000 eV basis set kinetic energy cut-off).

It is clear that the aug-cc-pVQZ basis sets do not yet yield
converged results. Especially for Cl2, an appreciable change
in the bond length is observed when going from an aug-cc-
pVQZ to an aug-cc-pV5Z basis set. In this context, one should
note that the aug-cc-pV5Z basis set for Cl contains more than
200 basis functions, and the computational expense of the
aug-cc-pV5Z GTO calculations in figure 3 exceeds the cost
of the corresponding PAW calculations (the break-even point
lies somewhere between the aug-cc-pVQZ and aug-cc-pV5Z
basis sets).
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Figure 3. Relative bond lengths of Cl2, ClF, and HCl obtained with
various GTO basis sets (aug-cc-pVXZ (X = D, T, Q, 5)), specified
with respect to the PAW PBE result.

4. Applications

This section discusses the results of hybrid functional
calculations (PBE0, HSE03, and B3LYP) of structural,
thermochemical, and electronic properties of a test set of
archetypical metallic (Na, Li, Al, Cu, Rh, Pd, and Ag)
semiconducting (Si, GaAs, BP, GaP, SiC GaN, C, BN), and
ionic (MgO, NaCl, LiCl, NaF, and LiF) solid state systems
(see [7] and [8], and references therein). Furthermore, we
present an evaluation of the HSE03 and B3LYP description
of the structural and electronic properties of several transition
metal monoxides (MnO, FeO, CoO, and NiO), and of HSE03
and PBE0 adsorption energies of CO on d-metal surfaces
(Cu(111), Rh(111), and Pt(111)).

4.1. Structural properties

Figures 4 and 5 show the relative errors in the PBE, PBE0,
HSE03, and B3LYP lattice constants and bulk moduli with
respect to experiment, for the materials in the aforementioned
test set. Additionally, tables 1 and 2 list several statistical
quantities, the mean error (ME), mean absolute error (MAE),
mean relative error (MRE), and mean absolute relative error
(MARE), to characterize the overall quality of the results with
respect to experiment.

As can be seen from figure 4 and table 1 the PBE
functional yields an overestimation of the lattice constants
(except for Li and Na). The general agreement between the
PBE lattice constants and experiment is quite satisfactory;
the largest relative error in the lattice constants amounts to
2.1% (for NaF), and the MRE and MARE to 0.8% and
1.0%, respectively. Since the calculated bulk moduli are quite
sensitive to the equilibrium volume at which they are evaluated,
an error in the theoretical lattice constant with respect to
experiment translates into a comparatively large discrepancy
in the bulk modulus. Generally speaking the underestimation
of lattice constants shows a one-to-one correspondence with an
overestimation of bulk moduli, and vice versa. This is clearly
illustrated by figure 5 and table 2.
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Figure 4. Relative error in the PBE, PBE0, HSE03, and B3LYP lattice constants with respect to experiment.

Figure 5. Relative error in the PBE, PBE0, HSE03, and B3LYP bulk moduli with respect to experiment.

Table 1. Mean error ME (Å), mean absolute error MAE (Å), mean
relative error MRE, and mean absolute relative error MARE, in the
PBE, PBE0, HSE03, and B3LYP lattice constants with respect to
experiment.

PBE PBE0 HSE03 B3LYP

All solids

ME 0.038 0.006 0.012 0.046
MAE 0.044 0.022 0.024 0.053
MRE (%) 0.8 0.1 0.2 1.0
MARE (%) 1.0 0.5 0.5 1.2

No metals (Si–LiF)

ME 0.047 0.002 0.009 0.042
MAE 0.047 0.020 0.022 0.042
MRE (%) 1.0 0.0 0.1 0.8
MARE (%) 1.0 0.4 0.5 0.8

The aforementioned overall overestimation of the lattice
constants and corresponding underestimation of the bulk
moduli is present in the PBE0 and HSE03 results as well (see
figures 4 and 5, and tables 1 and 2), though to a considerably
lesser degree (lattice constants: MARE(PBE0) = 0.5%,
MARE(HSE03) = 0.5%, compared to MARE(PBE) =
1.0%). The best description of the structural parameters of
the materials in the present test set is obtained using the PBE0
hybrid functional, closely followed by the (computationally
advantageous) HSE03.

The B3LYP results, on the other hand, present a slight
deterioration with respect to those obtained using the PBE
density functional (lattice constants: MARE(B3LYP) = 1.2%

Table 2. Mean error ME (GPa), mean absolute error MAE (GPa),
mean relative error MRE, and mean absolute relative error MARE, in
the PBE, PBE0, HSE03, and B3LYP bulk moduli with respect to
experiment.

PBE PBE0 HSE03 B3LYP

All solids

ME −12.3 −0.1 −2.6 −13.3
MAE 12.3 7.9 8.6 13.7
MRE (%) −9.8 −1.2 −3.1 −10.2
MARE (%) 9.4 5.7 6.4 11.4

No metals (Si–LiF)

ME −13.3 2.0 0.5 −7.7
MAE 13.3 5.4 5.9 8.1
MRE (%) −10.4 −0.7 −1.8 −6.8
MARE (%) 10.4 3.8 4.6 7.4

versus MARE(PBE) = 1.0%). As is evident from figures 4
and 5, this is mostly due to a poor description of the d metals
(Cu, Rh, Pd, and Ag).

4.2. Thermochemistry

4.2.1. Atomization energies. Figure 6 shows the relative
errors in the PBE, PBE0, HSE03, and B3LYP atomization
energies with respect to experiment, for the materials in our test
set. The corresponding statistical results (ME, MAE, MRE,
and MARE) are given in table 3.

As the latter shows, the overall description of the
atomization energies of our set of systems is best at the PBE

5
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Figure 6. Relative error in the PBE, PBE0, HSE03, and B3LYP atomization energies with respect to experiment.

Table 3. Mean error ME (eV), mean absolute error MAE (eV),
mean relative error MRE, and mean absolute relative error MARE, in
the PBE, PBE0, HSE03, and B3LYP atomization energies with
respect to experiment.

PBE PBE0 HSE03 B3LYP

All solids

ME −0.045 −0.228 −0.184 −0.590
MAE 0.134 0.286 0.252 0.590
MRE (%) −1.9 −6.5 −5.1 −17.6
MARE (%) 3.4 7.4 6.3 17.6

No metals (Si–LiF)

ME −0.018 −0.067 −0.063 −0.348
MAE 0.156 0.161 0.162 0.348
MRE (%) −1.2 −2.2 −2.1 −8.0
MARE (%) 3.4 3.6 3.6 8.0

level (with a MARE of 3.4%, compared to 7.4% and 6.3%
and 17.6% (!) for the PBE0, HSE03, and B3LYP results,
respectively). A comparison between the ME, MAE, MRE,
and MARE listed in table 3 for the complete set of systems
and the corresponding entries for the non-metallic systems only
(Si–LiF) shows that especially for the metallic systems (Na–
Ag) the HF/DFT hybrids underperform with respect to the
(conventional) PBE functional. This is clearly illustrated by
figure 6 as well.

As discussed in [7], the inclusion of HF exchange in the
hybrid functionals very likely causes an overestimation of the
exchange splitting in d elements. The concomitant increase
in the spin-polarization energy of the atomic system leads to
an underestimation of the atomization energy of the d metals.
Consequently, hybrid functionals fail to describe the d-metal
atomization energies, whereas PBE works reasonably well.

This situation is even worse in the case of the B3LYP
functional, for which the atomization energies of all metallic
systems (Na–Ag in figure 6) are severely underestimated.
Moreover, in the case of B3LYP this underbinding is present
in all systems possessing substantial itinerant character, i.e.,
it affects the small- to medium-gap systems as well (Si–BN).
Generally speaking, one may conclude that the more ‘free-
electron-like’ the material is the larger the deviations of the
B3LYP atomization energies to experiment are. Note that the
materials in figure 6 are listed from left to right in order of
increasing band gaps (e.g. Eg(Si) = 1.17 eV, Eg(GaAs) =

SiC
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Figure 7. Relative error in the PBE, PBE0, HSE03, and B3LYP
heats of formation with respect to experiment.

1.52 eV, etc). As shown in [8], the main reason for the poor
performance of the B3LYP functional is the use of the LYP
correlation energy: the LYP correlation functional does not
attain the homogeneous electron gas (HEG) limit.

4.2.2. Heats of formation. Figure 7 shows the relative errors
with respect to experiment, in the PBE, PBE0, HSE03, and
B3LYP heats of formation for some representative solid–gas
and solid–solid chemical reactions. As discussed in [8], the
PBE calculations show a pronounced underestimation of the
heats of formation (MARE(PBE) = 14% w.r.t. experiment),
whereas the HF/DFT hybrids yield markedly better results
(e.g. MARE(PBE0) = 8.8% and MARE(HSE03) = 9.5%).
Most strikingly, however, the B3LYP description of the heats
of formation is excellent (MARE(B3LYP) = 4.4%). The
latter was judged most likely to be fortuitous [8]: B3LYP heats
of formation are larger than the corresponding PBE, PBE0,
HSE03 results, primarily because of its underestimation of the
total energy of the metallic reactants. An overestimation of
the total energy of the molecular reactant and underestimation
of the energy of the metal in all likelihood cancels against a
similar overestimation for the reaction product. All solid–gas
reactions in figure 7 involve a metallic reactant and are thus
subject to this line of reasoning. The only exception is the
solid–solid SiC formation. This reaction does not involve a
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Figure 8. Band gaps from PBE, PBE0, and HSE03 calculations,
plotted against data from experiment.

metallic reactant and, in line with the previous arguments, the
B3LYP heat of formation for SiC is similar to that for PBE0
and HSE03.

4.3. Electronic properties

Figure 8 shows PBE, PBE0, and HSE03 band gaps plotted
against data from experiment. As expected, the PBE
calculations show the usual underestimation of the band gaps,
which is typical for the conventional density functionals.
The PBE0 and HSE03 hybrid functionals definitely provide
an improved description of the band gaps compared to
conventional DFT. In the case of HSE03, the improvements
are most pronounced for small- to medium-gap systems [6, 7],
whereas for large-gap systems (e.g. LiF, Ar, and Ne) the
gaps are still underestimated. The PBE0 functional yields
an overestimation of the band gaps in semiconductors, and
similar to the HSE03 case an underestimation of the gaps
in large-gap systems [7]. In large-gap systems, where the
dielectric screening is very weak, the correct exchange term
should approach the bare HF exchange, and admixing only
25% of HF exchange as is done in the PBE0 and HSE03
hybrids is not enough to correctly describe large-gap systems.
Furthermore, as shown in [7], the PBE0 and HSE03 description
of the electronic structure of metallic systems is not entirely
satisfactory either: the HSE03 bandwidths are slightly, and the
PBE0 bandwidths significantly, overestimated with respect to
experiment. In metallic systems dielectric screening is strong,
and one should ideally admix less than 25% of HF exchange to
correctly describe the exchange interactions.

4.4. Transition metal monoxides

Table 4 lists the lattice constants a0, local spin magnetic
moments Ms, and band gaps �, for the transition metal
monoxides (TMOs) MnO, FeO, CoO, and NiO, from LDA,
HSE03, and B3LYP [24–26] calculations, as well as from
experiment (see [27] and references therein).

Table 4. Lattice constants a0 (Å), spin magnetic moments Ms (μB),
and band gaps � (eV), for the transition metal monoxides MnO, FeO,
CoO, and NiO, from LDA, HSE03, and B3LYP [24–26] calculations,
as well as from experiment ([27] and references therein).

LDA HSE03 B3LYP Expt.

a0 4.31 4.44 4.50 4.45
MnO Ms 4.14 4.52 4.73 4.58

� 0.4 2.8 3.92 3.9

a0 4.17 4.33 4.37 4.33
FeO Ms 3.26 3.63 3.32/4.2

� 0.0 2.2 3.70 2.4

a0 4.10 4.26 4.32 4.25
CoO Ms 2.23 2.67 2.69 3.35/4.0

� 0.0 3.4 3.63 2.5

a0 4.06 4.18 4.23 4.17
NiO Ms 1.06 1.65 1.67 1.64

� 0.4 4.2 4.10 4.0

As illustrated by table 4, conventional density functionals,
e.g. the LDA, underestimate the TMO lattice constants and
the local magnetic moments on the transition metal ions, and
severely underestimate the TMO band gaps; FeO and CoO are
even predicted to be metals. These discrepancies result from
deficiencies of the LDA (or any other (semi-) local density
functional) to describe the strongly localized transition metal
3d states: conventional density functionals yield 3d states that
are spatially too delocalized.

The most widely used approaches to remedy this situation
are the GW approximation, self-interaction corrections (SICs),
the DFT + U method, and the use of HF/DFT hybrid
functionals (see for instance [28] and references therein).

In general, the Hartree–Fock approximation tends to
give rise to a higher degree of spatial localization of the
wavefunctions than conventional density functionals, and this
carries over to the HF/DFT hybrid functionals. As evident from
table 4 the admixture of HF exchange in the hybrid functionals
addresses the aforementioned deficiencies quite effectively.
The HF/DFT hybrids yield larger lattice constants, local spin
magnetic moments, and band gaps. In particular, the HSE03
functional gives TMO lattice constants and local spin magnetic
moments that are in excellent agreement with experiment. The
apparently large underestimation of the local magnetic moment
in the case of CoO (and to a lesser extent FeO) stems from
the neglect of spin–orbit coupling (SOC) in the calculations.
The inclusion of SOC would give rise to an additional orbital
magnetic moment.

Unfortunately, the agreement between the HSE03 and
B3LYP TMO band gaps and experiment is still rather erratic,
although they present a large improvement compared to the
corresponding LDA results.

4.5. CO on d-metal surfaces

The failure of the conventional (semi-) local exchange–
correlation density functionals to yield the correct adsorption
site for CO on d-metal surfaces is well documented (see for
instance [29]). Common density functionals predict CO to
adsorb in the hollow sites of, e.g., Cu, Rh, and Pt, whereas
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Table 5. The PBE, PBE0, and HSE03 adsorption energies (eV) of
CO in the top and hollow (fcc and hcp) sites on the (111) surfaces of
Cu, Rh, and Pt. For each surface and exchange–correlation
functional the entry corresponding to the preferred adsorption site is
underlined. All data taken from [30].

CO@ Site PBE PBE0 HSE03 Expt.

top 0.709 0.606 0.561 0.46–0.52
Cu(111) fcc 0.874 0.579 0.555

hcp 0.862 0.565 0.535

top 1.870 2.109 2.012 1.43–1.65
Rh(111) fcc 1.906 2.024 1.913

hcp 1.969 2.104 1.996

top 1.659 1.941 1.793 1.43–1.71
Pt(111) fcc 1.816 1.997 1.862

hcp 1.750 1.944 1.808

experimentally it is found that CO adsorbs at the top site: as
shown in table 5, the PBE functional incorrectly predicts CO
to adsorb in the fcc-hollow site on Cu(111) and Pt(111), and in
the hcp-hollow site on Rh(111) surfaces.

This probably results from an incorrect description of the
position of the highest occupied molecular orbital (HOMO:
5σ ) and the lowest unoccupied molecular orbital (LUMO:
2π∗) of CO with respect to the Fermi energy of the metal
(see [30] and references therein). Accordingly, the main
motivation to study CO adsorption using HF/DFT hybrid
functionals is the expected improvement in the description of
the CO HOMO and LUMO.

Table 5 lists PBE0 and HSE03 adsorption energies for CO
in the top and hollow (fcc and hcp) sites of Cu(111), Rh(111),
and Pt(111) surfaces. A comprehensive analysis of HF/DFT
hybrid calculations on CO adsorption energies is beyond the
scope of this paper, and we will limit ourselves to restating the
general conclusion drawn by Stroppa et al [30]:

(i) The admixture of HF exchange in the HF/DFT hybrid
functionals reduces the tendency to stabilize adsorption at
the hollow sites with respect to adsorption at the top site.
The hybrid functionals yield an improved description of the
position of the CO LUMO (2π∗) with respect to the Fermi level
of the metal: the CO 2π∗ is shifted upwards, away from the
Fermi level. This reduces the CO 2π∗ ↔ metal–d interaction
(the ‘backbonding’ related to the partial occupation of the 2π∗)
and destabilizes adsorption in the hollow sites. Unfortunately,
the aforementioned is counteracted by the fact that the HF/DFT
hybrid functionals yield a too large metal–d band width. As
shown in table 5, for the PBE0 and HSE03 functionals the net
reduction in the CO 2π∗ ↔ metal–d interaction is large enough
to predict the right CO adsorption site on Cu(111) and Rh(111),
but not on Pt(111), which has the largest metal–d band width.
Also note that the HSE03 CO adsorption energies in the top
and fcc-hollow sites on Cu(111) are almost degenerate, (the
same for HSE03 and PBE0 adsorption energies in top and hcp
sites on Rh(111)).

(ii) As illustrated by table 5, semilocal density functionals
(such as the PBE functional) generally show a tendency
to overestimate adsorption energies on metal surfaces [29].
Unfortunately, this seems to be the case for the PBE0 and
HSE03 hybrid functionals as well. Even worse, for CO

adsorption on Rh(111) and Pt(111), the PBE0 and HSE03
adsorption energies present a deterioration with respect to the
PBE result.

5. Conclusions

This contribution presents an overview of the characteristics
of the PBE0, HSE03, and B3LYP hybrid functionals applied
to the description of the structural, thermochemical, and
electronic properties of extended systems. In comparison
to common (semi-) local density functionals, these may be
summarized as follows:

(i) Compared to the PBE semilocal density functional, the
PBE0 and HSE03 hybrid functionals yield an improved
description of the structural properties (lattice constants
and bulk moduli) of extended systems: a reduction
of the overestimation of the lattice constants and the
corresponding underestimation of the bulk moduli. The
B3LYP hybrid functional performs slightly worse than
the PBE functional, mostly (but not only) due to a poor
description of the d metals.

(ii) The description of the atomization energies of extended
systems is best at the PBE level. The PBE functional
yields an overall underestimation of the atomization
energies, that is further enhanced by the hybrid
functionals. The latter underperform for metallic systems,
in the case of the B3LYP functional even dramatically so.
Worse still, the B3LYP underbinds all systems that possess
substantial itinerant character, i.e. small- to medium-gap
systems too. Excluding metals, the PBE0 and HSE03
hybrid functionals show a similar overall agreement with
experiment as the PBE does.

(iii) For the calculation of heats of formation, the use of
hybrid functionals presents a substantial improvement
over the PBE semilocal density functional. Whereas the
PBE shows a pronounced underestimation of the heats of
formation, the hybrid functionals yield markedly better
results. Most strikingly, the B3LYP description of the
heats of formation, for the systems we considered, is
excellent. This is believed to be fortuitous.

(iv) Compared to conventional density functionals, the PBE0
and HSE03 hybrid functionals provide a significantly
improved description of the band gap in extended systems.
The HSE03 band gaps for small- to medium-gap systems
are in good agreement with experiment. For large-
gap systems they still remain underestimated, but less
so than with conventional density functionals. The
PBE0 overestimates the band gap in semiconductors, and
similar to the HSE03 underestimates the gap in large-gap
systems. Both the PBE0 as well as the HSE03 functional
overestimate the band widths in metallic systems.

(v) Conventional density functionals fail to correctly describe
the structural and electronic properties of the transition
metal monoxides: underestimation of the lattice constants,
local magnetic moments, and band gaps (some transition
metal monoxides are even incorrectly predicted to be
metals). This originates from the fact that (semi-)

8



J. Phys.: Condens. Matter 20 (2008) 064201 M Marsman et al

local density functionals yield 3d states that are spatially
too delocalized. In keeping with what is generally
known about the Hartree–Fock approximation, the hybrid
functionals tend to give rise to a higher degree of spatial
localization. This addresses all of the aforementioned
deficiencies. In particular, the HSE03 yields transition
metal monoxide lattice constants and local magnetic
moments that are in excellent agreement with experiment.

(vi) Hybrid functionals present a modest improvement over
conventional density functionals in the description of CO
adsorption on d-metal surfaces: hybrid functionals reduce
the tendency to stabilize adsorption at the hollow sites with
respect to adsorption at the top site. Unfortunately, the
results are by no means satisfactory. For several systems
the hybrid functionals still yield the wrong site order
and/or much too large adsorption energies (most notably
CO@Pt(111)). This failure is related to the overestimation
of the metal–d band widths (see (iv)).

In principle, the amount of HF exchange that should
be admixed in a hybrid functional is system dependent and
one should not expect that a fixed ratio of HF to density
functional exchange will work well for all systems. In a
broad generalization one might state that hybrid functionals
perform well for molecules and insulators, but are lacking in
the description of metallic systems. We are thus left with the
problem of how to treat the aforementioned disparate systems
on the same theoretical footing.
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